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Natural habitats are being impacted by human pressures at an
alarming rate. Monitoring these ecosystem-level changes often re-
quires labor-intensive surveys that are unable to detect rapid or
unanticipated environmental changes. Here we have developed a
generalizable, data-driven solution to this challenge using eco-
acoustic data. We exploited a convolutional neural network to em-
bed soundscapes from a variety of ecosystems into a common
acoustic space. In both supervised and unsupervised modes, this
allowed us to accurately quantify variation in habitat quality across
space and in biodiversity through time. On the scale of seconds, we
learned a typical soundscape model that allowed automatic identi-
fication of anomalous sounds in playback experiments, providing a
potential route for real-time automated detection of irregular envi-
ronmental behavior including illegal logging and hunting. Our
highly generalizable approach, and the common set of features, will
enable scientists to unlock previously hidden insights from acoustic
data and offers promise as a backbone technology for global col-
laborative autonomous ecosystem monitoring efforts.
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With advances in sensor technology and wireless networks,
automated passive monitoring is growing in fields such as

healthcare (1), construction (2), surveillance (3), and manufactur-
ing (4) as a scalable route to gain continuous insights into the
behavior of complex systems. A particularly salient example of this
is in ecology, where, due to accelerating global change (5), we
urgently need to track changes in ecosystem health, accurately and
in real time, in order to detect and respond to threats (6, 7).
Traditional ecological field survey methods are poorly suited to this
challenge: they tend to be slow, labor intensive, and narrowly fo-
cused and are often susceptible to observer bias (8). Using auto-
mated monitoring to provide scalable, rapid, and consistent data on
ecosystem health seems an ideal solution (9, 10), yet progress in
implementing such solutions has been slow. Existing automated
systems tend to retain a narrow biotic or temporal focus and do not
transfer well to novel ecosystems or threats (11, 12).
We present an innovative framework for automated ecosystem

monitoring using eco-acoustic data (Fig. 1). We used a pre-
trained general-purpose audio classification convolutional neural
net (CNN) (13, 14) to generate acoustic features and discovered
that these are powerful ecological indicators that are highly de-
scriptive across spatial, temporal, and ecological scales. We were
able to discern acoustic differences among ecosystems, detect
spatial variation in habitat quality, and track temporal bio-
diversity dynamics through days and seasons with accuracies
surpassing that possible using conventional hand-crafted eco-
acoustic indices. We extended this approach to demonstrate ef-
ficient exploration of large monitoring datasets, and the un-
supervised detection of anomalous environmental sounds,
providing a potential route for real-time automated detection of
illegal logging and hunting behavior.

Our approach avoids two pitfalls of previous algorithmic as-
sessments of eco-acoustic data (15). First, we do not require
supervised machine-learning techniques to detect (16, 17) or
identify (18, 19) acoustic events indicating the presence of
threats or species. Supervised methods use annotated training
datasets to describe target audio exemplars. This approach can
yield high accuracy (20), but is narrowly focused on the training
datasets used, can be subverted [e.g., in the case of illegal activity
detection (21)], requires investment in laborious data annota-
tion, and frequently transfers poorly from one setting to
another (22).
Second, we do not depend on specific hand-crafted eco-

acoustic indices. Such indices share our approach of aggregat-
ing information across a whole audio sample (23)—a
soundscape—but differ in their approach of identifying a small
number of specific features [e.g., entropy of the audio waveform
(24)] rather than a machine-learned, general acoustic finger-
print. Again, these indices can predict key ecological indicators
in local contexts (25–27), but they often fail to discriminate even
large ecological gradients (28, 29) and behave unpredictably
when transferred to new environments (30).
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A lack of transferability is characteristic of approaches that use
site-specific calibration or training, where high local accuracy is
achieved at the cost of generality (31). Lack of generalizability is a
critical failure for monitoring applications, where rapid de-
ployment is essential and the nature of both threats and responses
cannot always be known in advance. Threats can be immediate,
such as logging or hunting (32), or play out over longer timescales,
such as the invasion of a new species (33) or climate change (34),
and may drive unpredictable ecological responses (35). The re-
markable efficacy of our feature set provides a general solution to
these complex methodological challenges. The same acoustic
features are highly descriptive across spatial and temporal scales
and are capable of reliably detecting anomalous events and be-
havior across a diverse set of ecosystems.

A Common Feature Embedding Yields Multiscale Ecological
Insight
We collected a wide range of acoustic data from the following
ecosystems: protected temperate broadleaf forests in both
Ithaca, New York, and Abel Tasman National Park, New Zea-
land; protected lowland rainforests in Sulawesi, Indonesia; pro-
tected and logged lowland rainforest in and surrounding
Nouabalé-Ndoki National Park, Republic of Congo; and low-
land rainforests across a gradient of habitat degradation in
Sabah, Malaysia. These five study sites span temperate, tropical,
managed, and protected forest ecosystems, allowing us to test the
transferability of our approach. In total we analyzed over 2,750 h
of audio, collected using a variety of devices including Audio-
Moths (36), Tascam recorders, Cornell Lab Swifts, and custom
setups using commercial microphones (Materials and Methods).
We then embedded each 0.96-s sample of eco-acoustic data in a
128-dimensional feature space using a CNN pretrained on
Google’s AudioSet dataset (13, 14).
AudioSet is a collection of human-labeled sound clips, orga-

nized in an expanding ontology of audio events, which contains
over 2 million short audio samples drawn from a wide range of
sources appearing on YouTube. Although a small amount of
eco-acoustic data is present, the vast majority of audio clips are
unrelated to natural soundscapes (13), with the largest classes
consisting of music, human speech, and machine noise. No
ecological acoustic datasets provide labeled data on a similar
magnitude to AudioSet, and when detecting “unknown un-
knowns” it is in fact desirable to have a feature space that is able
to efficiently capture characteristics of nonsoundscape-specific

audio. The resulting acoustic features are therefore both very
general and of high resolution, placing each audio sample in
high-dimensional feature space that is unlikely to show
ecosystem-specific bias.
We first investigated whether this feature embedding revealed

expected ecological, spatial, and temporal structure across our
eco-acoustic datasets. Short audio samples are highly stochastic,
so we averaged the learned acoustic features over 5 consecutive
minutes. We were able to clearly differentiate eco-acoustic data
from different ecosystems (Fig. 2A). Furthermore, samples from
the same location clustered strongly, even when different re-
cording techniques and equipment were used, and audio samples
from similar ecosystems were more closely located in audio
feature space (SI Appendix, Fig. S1). Within sampling locations,
the acoustic features captured ecological structure appropriate
to the spatial and temporal scale of recordings. Data recorded
across a gradient of logging disturbance in Sabah (37) reflected
independent assessment of habitat quality based on the quantity
of above-ground biomass (AGB), except for sites near rivers
where the background sound of water dominated the audio
(Fig. 2B). Monthly recordings across 3 y (2016 to 2019) from
Ithaca captured eco-acoustic trajectories describing consistent
seasonal changes in community composition driven by migratory
fluxes of birds (Fig. 2C). Similarly, daily recordings in Sabah
strongly discriminated between the dawn and dusk choruses in
the tropical rainforest of Malaysia, with large discontinuities at
05:00 and 17:00 h, respectively, that reflected diurnal turnover in
the identity of vocalizing species (Fig. 2D). The same acoustic
features also revealed diurnal patterns in data from the four
other ecosystems used in this study (SI Appendix, Fig. S2). These
results show that we are able to capture complex hierarchical
structure in ecosystem dynamics using a common eco-acoustic
embedding, with no modification required when moving across
spatial and temporal scales.
While unsupervised approaches can thus be used to qualita-

tively visualize and explore ecosystem data in our feature space,
a core aim of autonomous monitoring systems is to directly
predict ecosystem health and to be able to do so longitudinally
over long time periods. We showed that the same general
acoustic features (derived from the pretrained CNN) were well
suited to this problem by performing a series of classification
tasks. Classifications were performed using a random forest
classifier in the full feature space, and we compared the per-
formance [measured by F1 score (39)] with a feature space made

A

B

C
Fig. 1. A common framework for monitoring ecosystems autonomously using soundscape data. (A) We embed eco-acoustic data in a high-dimensional
feature space using a CNN. Remarkably, this common embedding means that we can both (B) draw out ecological insights into ecosystem health across
multiple temporal and spatial scales, and (C) effectively identify anomalous sounds in an unsupervised manner.
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up from five existing eco-acoustic indices (EAI) often used to
assess ecosystem health (Materials and Methods). Our approach
provided markedly more accurate predictions of biodiversity and
habitat quality metrics in both temperate (avian richness; CNN:
88% versus EAI: 59%; Fig. 3A) and tropical (AGB; CNN 94%
versus EAI 62%; Fig. 3B) landscapes. Importantly, our predic-
tions of avian richness did not require individual identification of
species within the soundscape—a process only possible given vast
amounts of manually labeled, species-specific data. General
acoustic features also allowed more accurate predictions of
temporal variables at both seasonal (months within temperate
soundscapes; CNN 86% versus EAI 42%; Fig. 3C) and daily
(hours within tropical soundscapes; CNN 68% versus EAI 31%;
Fig. 3D) timescales. These results pave the way for automated
eco-acoustic monitoring to detect environmental changes over

long time scales. For example, the loss of tree biomass from
logging over a period of months, annual shifts in the seasonal
phenology of bird communities (40), and the gradual increase of
forest biomass through decades of forest recovery or restoration
(41) may all be accurately tracked through time using this
analysis framework.

A Common Feature Space Allows Effective Unsupervised
Anomaly Detection and Eco-Acoustic Data Summarization
Given the huge volumes of audio data that are rapidly collected
from autonomous monitoring networks, it is important to create
automated summaries of these data that highlight the most
typical or anomalous sounds at a given site—a task that is not
possible given current approaches to eco-acoustic monitoring. In
particular, the task of unsupervised anomaly detection is critical

A

C

B

D

Fig. 2. Embedding eco-acoustic data in a common, highly descriptive feature space yields ecological insight across spatial and temporal scales. (A) Seven eco-
acoustic datasets from five countries are embedded in the same acoustic feature space, in which different ecosystems are distinguished. Features were robust
to different recording technologies used in Sabah (Tascam, Audiomoth) and Ithaca (Swift, custom microphone) (Materials and Methods). (B) Tropical forest
areas in Sabah that differ in habitat quality (measured by above-ground biomass, log10[t·ha

−1]) cluster in the same acoustic feature space. (C) Three years of
soundscape data from a temperate forest in Ithaca reveals a clear seasonal cycle. (D) One month of acoustic data from a logged tropical forest site in Sabah
shows a repeating diurnal pattern. In all panels, UMAP (38) was used to visualize a 2D embedding from the full 128-dimensional acoustic feature space, and
centroids of classes are denoted by larger points.
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in real-time warning systems which need to automatically warn of
unpredictable rapid changes to the environment or illegal ac-
tivities such as logging and hunting (32). Our solution to both the
problems of efficient data summarization and unsupervised
anomaly detection involves performing density estimation in our
general acoustic feature space.
We developed a site-specific anomaly-scoring algorithm using

a Gaussian mixture model (GMM) fit to 5 full days of acoustic
features from a given recording location. Here we used the
original 0.96-s, 128-dimensional features, which best captured
transient acoustic events. We then explored the most typical and
anomalous sounds from a logged tropical forest in Sabah,
Malaysia, to demonstrate how this approach allows efficient
exploration of large amounts of data (Fig. 4A). High-probability,
or typical, sounds corresponded to distinct background noise
profiles, driven primarily by insect and frog vocalizations, which
varied in composition throughout the day, and regular abiotic
sounds such as rainfall. Low probability, or anomalous, sounds
included sensor malfunctions, anthropogenic sounds (e.g.,
speech), distinctive species calls that were heard rarely during
the recording period (e.g., gibbon trills), or unusually loud events
(e.g., a cicada immediately adjacent to the microphone)
(Fig. 4A). Exploring the data in this way, we were able to acquire
a high-level, rounded summary of a 120-h (432,000-s) period of
acoustic monitoring by listening to just 10 s of the most typical
sounds and 12 s of anomalies (Audio File S1).
Real-time detection of human activities such as illegal logging

and hunting is a particularly pressing problem in protected areas
(32). One approach is to train supervised classifiers to search for
sounds such as chainsaws (42) or gunshots (43). However, not

only do these classifiers require specific training datasets, but
also they can easily go out of date or be subverted [e.g., by using
a different gun (21)]. We carried out calibrated playback ex-
periments to test the efficacy of our unsupervised density esti-
mation approach for detecting novel acoustic events without
prior training. We used a speaker to play sounds including
chainsaws, gunshots, chopping, lorries, and speech at distances of
1, 10, 25, 50, and 100 m from an acoustic recorder within the
habitat (Fig. 4B) (for logistical reasons we were unable to use
real chainsaws, guns, etc.). We then replicated this experiment
across 10 sites from the land degradation gradient in Sabah,
Malaysia. All sounds were scored as strongly anomalous at 1 m,
but differed in how the score declined with distance. Chainsaws,
gunshots, and, to a lesser extent, chopping all scored highly at
distances of up to 25 m of forest from the recorder, but were not
audible over background noise at greater distances (Fig. 4C). In
contrast, lorries and speech were reliably detected only within
about 10 m of the recorder. Detection ranges in real-world set-
tings will be larger as our playback experiments were unable to
fully replicate the sound pressure levels of events such as gun-
shots (Materials and Methods). The same playback experiment
also detected chainsaw and gunshot sounds in a temperate set-
ting in Ithaca with no modification to the algorithm (SI Appendix,
Fig. S3), suggesting that this approach to automated anomaly
detection is transferable among vastly differing ecosystems.

The Future of Automated Environmental Monitoring
We have shown how state-of-the-art machine-learning techniques
can be used to draw out detailed information on the natural en-
vironment via its soundscape. Using a common learned feature

A B

C D

Fig. 3. General acoustic features allow accurate classification of the degree of ecosystem degradation and position in diurnal and seasonal cycles. We
performed a multiclass classification task using a 20% test set to assess the predictive power of the general acoustic features on a range of spatial and
temporal scales of eco-acoustic data. For each task we measured the F1 score for each of the classes and compared the results using general acoustic features
derived from a pretrained CNN (red) to a baseline made up of standard eco-acoustic indices regularly used in eco-acoustics (blue) (Materials and Methods). In
A, we were able to accurately predict a measure of biodiversity (avian richness, species per hour) from a temperate forest site in Ithaca. (B) We were also able
to predict habitat quality (as measured by above-ground biomass, log10[t·ha

−1]) across a landscape degradation gradient in tropical Malaysia with high
accuracy, with the exception of sites near rivers. In C and D, we show how temporal cyclicity on the scale of months and hours, respectively, can be predicted
using the same acoustic feature set.
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embedding, derived from a large dataset of nonecosystem audio
data, we were able to monitor diverse ecosystems on a wide variety
of spatial and temporal scales and to predict biological metrics of
ecosystem health with much higher accuracies than was previously
possible from eco-acoustic data. Furthermore, we used the same
feature-based approach to concisely summarize huge volumes of
data and to identify anomalous events occurring in large datasets
over long time periods in an unsupervised manner. Our approach
offers a bridge from unpredictable handcrafted eco-acoustic in-
dices and highly taxonomically specific detection-classification
models to a truly generalizable approach to soundscape analysis.
Although in this paper we have focused on monitoring of tropical
and temperate forests, future work could employ learned features
to analyze eco-acoustic data from grasslands, wetlands, or marine
or freshwater ecosystems (23). Additionally, the same approach
can easily be generalized to other fields employing acoustic anal-
ysis, for example, in healthcare (1), construction (2), surveillance
(3), or manufacturing (4). Pairing these new computational
methods with networked acoustic recording platforms (44, 45)
offers promise as a general framework on which to base larger
efforts at standardized, autonomous system monitoring.

Materials and Methods
Audio Data Collection. Audio data were collected from a wide variety of
locations using different sampling protocols in this study.

In Sabah, Malaysia, two datasets using different recording devices con-
tained data across an ecological gradient encompassing primary forest,
logged forest, cleared forest, and oil palm sites (37) collected between
February 2018 and June 2019. In the Tascam dataset, audio was recorded as
20-min sound files at 44.1 kHz using a Tascam DR-05 recorder mounted at
chest height on a tripod at 14 sites. One 20-min file was recorded per hour at
each site, and a total of 27 h 40 min was recorded. In the Audiomoth
dataset, version 1.0.0. devices (36) were used. Audio was recorded continu-
ously in consecutive 5-min sound files at 16 kHz. Audiomoths were secured
to trees at chest height across 17 sites (14 overlapping with the Tascam
dataset). A total of 748 h of audio was recorded.

Two datasets were recorded from Sapsucker Woods, Ithaca, New York,
using the following methodologies. The first dataset was recorded from a
single location, continuously over 3 y, between January 2016 and December
2019 (inclusive) using a Gras-41AC precision microphone and audio-digitized
through a Barix Instreamer ADC at 48 kHz. A total of 797 h of audio was
collected. The second dataset contains 24 h of audio from 13 May 2017 and
was recorded using 30 Swift acoustic recorders across an area of 220 acres.
Audio was recorded continuously in consecutive 1-h files at 48 kHz, and
recorders were attached to trees at eye height. A total of 638 h of audio
was recorded.

In New Zealand, audio was recorded using semiautonomous recorders
from the New Zealand Department of Conservation from 8 to 20 December
2016. Ten units were deployed in the Abel Tasman National Park, with 5 on
the mainland and 5 on Adele Island. Audio was recorded continuously in
consecutive 15-min files at 32 kHz. Recorders were attached to trees at eye
height. A total of 240 h of audio was recorded.

In Sulawesi, audio was recorded using Swift acoustic recorders with a
standard condenser microphone in Tangkoko National Park, a protected

A

B

C

Fig. 4. Density estimation in acoustic feature space allows unsupervised
detection of anomalous sounds. (A) A projection of the GMM fit to five
full days of data from one logged tropical forest site in Sabah, Malaysia.
Principal component analysis was used to project the GMM centers and co-
variances from 128 to 2 dimensions for purposes of visualization, and shaded
areas correspond to 2 SDs from each GMM center. Points close to the centers
are typical background sounds and thus are given low anomaly scores (i, ii,
and iii: ambient noise at different times of day; iv: light rain in a largely silent
forest) (Audio File S2). Conversely, very unusual sounds are in low-density
regions of acoustic space and are given high anomaly scores (1: human

talking; 2: vocalizing gibbon in background; 3: sensor malfunction; 4: loud
insect near microphone) (Audio File S2). (B) We used playback experiments
to test the sensitivity of the anomaly score to novel acoustic events, illus-
trated here by chainsaw sounds. Spectrograms are shown for audio
recorded from a fixed location when the anomalous audio file (original)
was played from a speaker at a variety of distances. Blue and green rep-
resent time-frequency patches of low and high volume, respectively, and
the black line is the anomaly score for each 0.96 s of audio. (C ) We in-
vestigated the sensitivity of the algorithm to a variety of anomalous
sounds typical of illegal activity (chainsaws, gunshots, chopping, lorries,
talking). Anomaly scores were averaged across 10 sites from a logged
tropical forest landscape in Sabah and vary with distance of playback.
Dashed lines show where averaged anomaly scores entered the top 0.1
and 0.01%, respectively, of all 449,280 0.96-s audio clips that were used to
fit the probability density function.
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lowland tropical forest area. Data were recorded from four recording lo-
cationswithin the park duringAugust 2018. Audiowas recorded continuously
in consecutive 40-min files at 48 kHz. Recorders were set at 1 m height from
ground level. A total of 64 h of data was recorded.

In the Republic of Congo, audio was recorded using Swift acoustic re-
corders with a standard condenser microphone from 10 sites in and sur-
rounding Nouabalé-Ndoki National Park between December 2017 and July
2018. Audio was recorded continuously in consecutive 24-h files at 8 kHz.
Habitat types spanned mixed forest and Gilbertiodendron spp. from within a
protected area, areas within a 6-y-old logging concession, and within active
logging concessions. Recorders were set at 7 to 10 m from ground level,
suspended below tree limbs. A total of 238 h 20 min of audio was recorded.

Acoustic Feature Embedding. Each 0.96-s chunk of eco-acoustic audio was first
resampled to 16 kHz using a Kaiser window, and a log-scaled Mel-frequency
spectrogram was generated (96 temporal frames, 64 frequency bands). Each
audio sample was then passed through a CNN from Google’s AudioSet
project (13, 14) to generate a 128-dimensional embedding of the audio.

The architecture of the particular CNN that we used, VGGish, was based
upon Configuration A of the VGG image classification model with 11 weight
layers (46). VGGish was trained by Google to perform general-purpose audio
classification using a preliminary version of the YouTube-8M dataset (47).
Once trained, the final layer was removed from the network, leaving a
128-dimensional acoustic feature embedding as the CNN output. In this
study, we used a Tensorflow implementation of VGGish provided at https://
github.com/tensorflow/models/tree/master/research/audioset/vggish.

Data from Nouabalé-Ndoki, Republic of Congo was recorded at 8 kHz,
and then up-sampled to 16 kHz to enable its input to the CNN. While many
animals produce sounds with fundamental frequencies below the original Nyquist
limit of 4 kHz, it should be noted that audio from other datasets contained full
spectrum information up to at least 8 kHz when features were calculated.

The CNN that we used takes aMel-scaled spectrogram of 0.96 s of duration
at a Nyquist frequency of 8 kHz as an input. Insects and bats in particular
produce sounds reaching well into the ultrasonics (23) which contain impor-
tant ecological information but will be missed by this embedding, although
their presence may be indicated by species vocalizing under the 8 kHz Nyquist
limit. Additionally, the features may be biased toward stationary signals oc-
curring over longer durations, as very short acoustic events could be smoothed
out by the window size of the CNN. To achieve a similar embedding that in-
cludes information from higher frequencies and can receive variable length
inputs, one could train a newmodel. However, to completely retrain the model
would require acquiring an extremely large dataset (the YouTube-8M dataset
used by Hershey et al. (14) contains over 350,000 h of audio), and therefore a
hybrid transfer learning approach would likely be more appropriate.

As a baseline comparison we created a similar embedding using a selection
of standard metrics used extensively in the soundscape ecology literature.
These were Sueur’s α-index (24), temporal entropy (24), spectral entropy (24),
Acoustic Diversity Index (48), and Acoustic Complexity Index (49). Each of the
above features was computed over 1-s windows of audio and concatenated
to create a five-dimensional feature vector. This is referred to as a compound
index in standard eco-acoustic studies (25).

For the multiclass classification problems, for prediction of biodiversity,
and to create the visualizations in Fig. 2, we averaged acoustic feature
vectors over consecutive 5-min periods to account for the high stochasticity
of short audio samples.

Dimensionality Reduction. To produce Fig. 2, we used a uniform manifold
learning technique (UMAP) (38) to embed the 128-dimensional acoustic fea-
tures into a two-dimensional (2D) space. For the global comparison (Fig. 2A)
there was a large sample size imbalance among the datasets. To ensure that
the dimensionality reduction was not biased, we randomly subsampled 27 h
40 min of data from each dataset before running the UMAP algorithm, and
then all points were reprojected into 2D based on this embedding.

Multiclass Classification. We performed multiclass classification using a ran-
dom forest classifier (50) with 100 trees on acoustic features averaged over
5 min. We used a five-fold cross-validation procedure in which data were
split into stratified training and test sets using an 80:20 ratio. F1 score was
chosen to report classifier accuracy as it integrates information regarding
both precision and recall (39). The balanced accuracy of the classifier on the
test set was reported as an average F1 score for each class to account for
sample-size imbalances among classes.

Quantifying Biodiversity and Habitat Quality. In Ithaca, New York, between 25
February and 31 August 2017 near-continuous recordings were made using

Swift recorders across 30 sites through the Sapsucker Woods area at a sample
rate of 48 kHz. For each 1-h period of each day during this period, we randomly
selected 1 of the 30 sites in which to quantify biodiversity within the audio re-
cording. For the chosen site and hour combination, a 1-h audio clip was manually
annotated to identify all avifaunal species vocalizing. Avian richness at each site
was taken to be the total number of distinct species detected in the recordings.
Finally, values of avian richness were normalized by sampling effort for all sites.
Annotations were made using the Raven Pro software (51).

For each of the 17 sites across a logged tropical forest ecosystem in Sabah,
Malaysia, we estimated AGB (log10[t·ha

−1]). Raw AGB values across the
landscape were taken from Pfeifer et al.’s estimates based on ground sur-
veys of the same study site (52). Pfeifer et al. (52) identified a number of 25-
× 25-m plots across the SAFE (Stability of Altered Forest Ecosystems) project
landscape. Within each plot, tree diameter and height were recorded, and
an allometric equation was applied to derive an estimate for AGB at that
location. For each of our recording sites we averaged AGB from all plots
surveyed by Pfeifer et al. (52) within 1 km of the recorder. This allowed us to
gain a broader picture of ecosystem health, as acoustic data integrates in-
formation over larger spatial scales than the 25- × 25-m plots used for the
original AGB estimates.

While both avian richness and AGB were derived as numerical variables,
we grouped sites into equidistant bins in both cases and treated them as
categorical variables for the purposes of the multiclass classification task.

Anomaly Score Definition and Density Estimation. We used a GMM with 10
components anddiagonal covariancematrices to fit a probability density function
to 5 d of acoustic features from each site (449,280 clips of 0.96 s per site). Acoustic
features were calculated at the 0.96-s resolution with no averaging over longer
time windows in the full 128-dimensional feature space. We tested for im-
provements to the method by estimating the probability distribution using the
following: 1) additional GMM components, 2) nondiagonal covariance matrices,
and 3) a Dirichlet-process Bayesian GMM (53). Each of these modifications de-
livered only small advantages (with respect to the ability to identify synthetic
anomalies) despite considerable increases in computational complexity. Accord-
ingly, here we report the results of a 10-component GMM with diagonal co-
variance matrices in the 128-feature space.

The anomaly score of each 0.96-s audio clip was defined as the negative
log likelihood of its acoustic feature vector, given the probability density
function for the site at which the audio was recorded.

We used the GMM as a data exploration tool to pull out the most anomalous
and typical sounds over a 5-d period in a logged forest site in Sabah, Malaysia
(Fig. 4 A and B). To characterize the most typical sounds of the soundscape, we
found the audio clips from the 5-d period which were closest (Euclidean distance)
to each of the 10 GMM components in the feature space. To find a small set of
distinct anomalous sounds, we first clustered the 50 most anomalous audio clips
using affinity propagation clustering (54), which returns a variable number of
clusters. Then, from each of the clusters we picked the clip which had the
maximum anomaly score as a representative for the final list of anomalies.

In Fig. 4A, we show a 2D representation of a 128-dimensional acoustic
feature space in which the GMM-derived probability density function is
depicted from a logged tropical forest site in Sabah, Malaysia. Dimensionality
reduction was performed by applying principal component analysis (PCA) to
the 5 d of 0.96-s audio clips used to fit the GMM. Anomalous points and the
centers and covariances of each of the GMM components were projected into
2D using the same embedding, and shaded areas represent two SDs from
each of the centers. PCA was used over other nonlinear dimensionality re-
duction techniques to enable straightforward visualization of the probability
density function.

Anomaly Playback Experiments. Three variants from the following five cate-
gories of soundswere used for the anomaly playback experiments: chainsaws,
gunshots, lorries, chopping, and talking. All sounds were played in WAV
format on a Behringer Europort HPA40 Handheld PA System, and the audio
files and speaker together were calibrated to the following sound pressure
levels (SPL) at 1 m (chainsaws: 110 dB SPL; gunshots: 110 dB SPL; lorries: 90 dB
SPL; chopping: 90 dB SPL; talking: 65 dB SPL). All 15 playback sounds were
played while holding the speaker at hip height facing an Audiomoth re-
cording device affixed to a tree at chest height. This was repeated at distances
of 1, 10, 25, 50, and 100 m.

Real-world SPL levels are higher for chainsaws and gunshots, but we were
unable to reproduce sound pressure levels above 110 dB SPL with the speaker
used. For this reason, we expect the detection distances of real events to be
larger than reported here. For example, conservatively assuming spherical
sound absorption, a real gunshot sound (∼150 dB SPL at 1 m) will have traveled
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100 m by the time it is attenuated to 110 dB SPL (the value used in our playback
experiments).

Data and Materials Availability. Code to reproduce results and figures from
this study is available on Zenodo at https://doi.org/10.5281/zenodo.3907296 (55),
and the associated data can be found at https://doi.org/10.5281/zenodo.
3530206 (56).
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