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ABSTRACT

Understanding the ecological interactions between plant reproductive strategies and frugivore feeding behavior can offer insight into the
maintenance of tropical forest biodiversity. We examined the role of plant ecological and phenological characteristics in influencing fruit
consumption by the White-bearded gibbon (Hylobates albibarbis) in Gunung Palung National Park, Indonesian Borneo. Gibbons are wide-
spread across Borneo, highly frugivorous and perform important seed dispersal services. We compare multiple models using information
criteria to identify the ecological and phenological predictors that most strongly influence gibbon fruit use of 154 plant genera. The most
important predictors of resource use were the overall abundance of a genus and the consistency of fruit availability. Plant genera can
maintain constant fruit availability as a result of (1) individual stems fruiting often or (2) stems fruiting out of synchrony with each other
(asynchrony). Our results demonstrate that gibbons prefer to feed on plant genera that provide consistent fruit availability due to fruit-
ing asynchrony. Because gibbons feed more often on genera that fruit asynchronously, gibbons are more likely to disperse seeds of plant
genera with this reproductive strategy. Research on other frugivorous species is needed to determine whether the results for gibbons are
generalizable more broadly. Finally, these results suggest that asynchronously fruiting plant genera may be particularly important for hab-
itat restoration in tropical forests designed for frugivore conservation.

Abstract in Indonesian is available in the online version of this article.
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MUTUALISTIC INTERACTIONS BETWEEN TREES THAT PRODUCE FLESHY

FRUITS AND THE frugivores that disperse their seeds are wide-
spread in forest ecosystems and contribute to the maintenance of
biodiversity (McKey 1975, Terborgh et al. 2002). Animal-medi-
ated dispersal is the most common means of seed dispersal for
angiosperms in tropical forests, comprising 50–75 percent of
tropical tree species (Howe & Smallwood 1982, da Silva & Tabar-
elli 2000). It is therefore unsurprising that there has been a con-
siderable amount of interest in identifying the qualities of fruits
and fruiting plants that predict use by frugivores. Research aimed
at predicting fruit use has involved both the physiological and
morphological traits of the fruits themselves (Janson 1983,
Fischer & Chapman 1993, Leighton 1993, McConkey et al. 2002)
as well as general ecological and phenological characteristics of
woody angiosperms (e.g., spatial and temporal abundance
(McConkey et al. 2003, Walker 2007, Felton et al. 2008), crop size
(Leighton 1993, Korine et al. 2000), and fruiting synchrony
(Fredriksson & Wich 2006) or asynchrony (Poulin et al. 1999)).

Studies examining the role of fruit morphology and chemis-
try in determining use by frugivores have determined that com-
monly eaten fruits are often similar in their macronutrient balance
(Conklin-Brittain et al. 1998, Felton et al. 2009), chemical defenses
(Cipollini & Levey 1997, Wrangham et al. 1998), and morphologi-
cal characteristics (e.g., size and color; Fischer & Chapman 1993,
Korine et al. 2000, Terborgh et al. 2002, Stevenson & Link 2010).
Indeed a number of studies have hypothesized distinct plant ‘dis-
persal syndromes’ based on a correspondence between the mor-
phology and chemistry of fruits and the anatomies and
preferences of their putative vertebrate dispersers. Dispersal syn-
drome patterns have been identified in site-specific field studies
(Knight & Siegfried 1983, Gautier-Hion et al. 1985, Lom�ascolo
et al. 2010). Broad spatial patterns in plant and animal distribu-
tions reflecting dispersal syndromes have also been found (Voigt
et al. 2004, Almeida-Neto et al. 2008, Beaudrot et al. 2013).

In contrast with the breadth of studies of fruit traits,
research on the ecological characteristics of plants important to
frugivores has often been confined to a single characteristic or
has focused on a single plant taxon. Nevertheless, several areas
of research have demonstrated that general ecological characteris-
tics of fruiting plants can strongly influence frugivore diets (van
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Schaik et al. 1993, Burns 2004, Thies & Kalko 2004, Hanya
2005). For instance, it is known that taxa with large crop sizes
are preferred by several tropical bird and bat species (Korine
et al. 2000, Blendinger & Villegas 2011). Additionally, spatial
abundance of a plant species at multiple scales is known to influ-
ence avian frugivore foraging (Garcia & Ortiz-Pulido 2004, Carlo
& Morales 2008). Finally, plants that stagger fruiting times across
individuals (such as figs [Ficus: Moraceae]) play important roles as
keystone resources for many tropical frugivores, given their con-
stant availability (Janzen 1979, Terborgh 1983, Lambert & Mar-
shall 1991, van Schaik et al. 1993, Marshall & Wrangham 2007).

Despite the importance of specific ecological characteristics of
fruiting plants for predicting frugivore use, to date few studies
have considered multiple ecological characteristics simultaneously
or examined patterns across broad taxonomic groups (Fleming
1992, Leighton 1993). As a result, we know little about the relative
importance of ecological characteristics in determining fruit con-
sumption and whether these patterns are consistent across plant
taxa in diverse communities. Identification of patterns such as
these will inform our understanding of frugivore foraging strate-
gies, as well as their implications for animal-dispersed plant species.

Primates comprise a major proportion of biomass of the
frugivorous vertebrates found on the island of Borneo in South-
east Asia (MacKinnon et al. 1996, Primack & Corlett 2005). Fur-
thermore, of the 13 primate species found on Borneo, gibbon
diets contain the highest percentage of fruit (Gupta & Chivers
1999). Moreover, gibbons have been documented to feed on a
wide variety of plant taxa (Marshall et al. 2009b). Gibbons there-
fore provide an excellent taxon in which to investigate the role of
ecological plant characteristics in predicting frugivore use. Addi-
tionally, the high plant diversity in Southeast Asian forests pro-
vides many genera of available fruit resources (Kier et al. 2005)
encompassing a wide range of phenological patterns (Van Schaik
1986, Marshall & Leighton 2006). Moreover, there are significant
temporal fluctuations in fruit availability, with highly productive,
aseasonal masting events separated by periods of general fruit
scarcity (Wich & van Schaik 2000, Marshall & Leighton 2006,
Cannon et al. 2007a), which produce a wide range of ecological
conditions to which frugivores must adapt.

In this study, we examine the relative importance of multi-
ple ecological and phenological characteristics of plants in influ-
encing consumption by frugivorous White-bearded gibbons
(Hylobates albibarbis) in Indonesian Borneo. Considering the wide
range of plant taxa known to be consumed by co-occurring
frugivorous vertebrates in Borneo, we address questions includ-
ing: (1) does the amount of fruit that a plant produces, as esti-
mated by its diameter at breast height (dbh) and crop size,
predict consumption? (2) Does the density of stems of a genus
(which reflects the commonness throughout the landscape) or
the frequency with which individual stems fruit strongly affect
use? (3) Does temporal clustering of fruiting events or timing
of reproductive bouts relative to the rest of the forest affect
which taxa are more likely to be consumed? We address these
questions by quantifying ecological and phenological characteris-
tics of 154 plant genera. We then use an information theoretic

approach to identify which predictors most strongly influence
gibbon fruit use by comparing multiple models using AICc
model selection.

MATERIALS AND METHODS

FIELD SITE.—Our study was conducted at the Cabang Panti
Research Station (CPRS) in Gunung Palung National Park, West
Kalimantan (1°130 S, 110°70 E). The study site contains seven
distinct forest types that differ due to variations in soil type,
drainage, altitude, and underlying geology (Paoli et al. 2006, Mar-
shall 2009, 2010, Marshall et al. 2014). Phenological patterns in
two of the seven forest types, montane and peat swamp forests,
differ dramatically from the five other forest types found at the
site (Marshall & Leighton 2006, Cannon et al. 2007a,b). We there-
fore restricted our analysis to feeding observations and phenolog-
ical data from the following five forest types: freshwater swamp,
alluvial bench, lowland sandstone, lowland granite, and upland
granite. Although there may be interesting differences among
these habitats in the ecological characteristics we considered, we
did not have a sufficient number of feeding observations in each
habitat to permit robust analyses at the level of forest type. We
present data on plant phenology and gibbon feeding collected
between October 2007 and February 2013.

PLANT DATA COLLECTION AND ANALYSIS.—We used a random num-
ber generator to select ten plant phenology plots in each forest
type from among the 126 that were randomly placed at the site
in the mid 1980s by M. Leighton and colleagues (Cannon &
Leighton 2004, Cannon et al. 2007b). The locations of the plots
in each forest type were determined initially using a random
number generator to select co-ordinates and bearings for each
(M. Leighton, pers. comm.). Plots were either 0.1 or 0.2 ha in
size and sampling area totaled 1.5 ha per forest type. In these
plots, trees larger than 14.5 cm dbh, all lianas larger than 3.5 cm
dbh, and all hemi-epiphytic figs whose roots reached the ground
were identified, measured, and tagged (see Marshall & Leighton
2006, Marshall 2004, 2010 for details). As a result of our dbh cut-
off, smaller trees and understory shrubs were excluded from the
analysis. We retagged and recorded the locations of all stems in
the seventy plots in 2007. Botanical nomenclature followed APGII
(Angiosperm Phylogeny Group 2003). We monitored monthly the
reproductive behavior of all tagged tree, fig, and liana stems
located in the phenology plots (mean stems/mo = 3050;
SD = 464). We carefully examined each stem with binoculars and
assigned it to one of six reproductive states: reproductively inac-
tive, bearing flower buds, flowers, immature, mature, or ripe fruits.
We used changes in fruit size, color, and texture to determine
ripeness stages for each plant taxon, following categories devel-
oped over the last 20 yr (Cannon et al. 2007b, Marshall et al.
2009b). If the stem was reproductively active, we assessed the
total crop size using a semi-logarithmic scale to avoid compound-
ing errors at large crop sizes (Marshall & Wich 2013).

We conducted all analyses at the generic level. While there
are species-specific differences in plant phenology and fruit traits,
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demonstration of phylogenetic conservatism at the genus level
has called into question the appropriateness of broad comparative
analyses at the species level, due to statistical non-independence
(Harvey & Pagel 1991, Kelly & Purvis 1993, Chazdon et al.
2003, Davies et al. 2013). In addition, Bornean forests contain
some of the highest levels of vascular plant diversity in the world
(Kier et al. 2005). As a consequence, despite extensive sampling
and many voucher specimen collections, a considerable propor-
tion of the flora have yet to receive formal taxonomic treatment
in the scientific literature and were therefore only identified to
the genus level.

We calculated model predictors for each plant genus
(N = 154) that fruited at least once during the 66-mo study per-
iod and that was observed to have been fed upon at least once
by a vertebrate at CPRS (Blundell 1996, Laman et al. 1996, Mar-
shall et al. 2009b). In addition to including model predictors for
each genus for growth form (i.e., tree, liana), crop size, and dbh, we
also calculated several predictors to take into account the com-
monness of a genus across the landscape and its fruit availability
over time. To balance sample sizes among categories and thereby
facilitate robust analysis, crop size was organized into four discrete
categories: I (1–25 fruits), II (26–100 fruits), III (101500 fruits),
IV (>500 fruits). Due to concerns that this categorical approach
may have been overly conservative (and insufficient to reveal cor-
relations between crop size and other continuous predictors), we
also included dbh as a continuous proxy variable for crop size
(Chapman et al. 1992, Leighton 1993, Marshall & Wich 2013).
Stem density was defined as the average number of stems of the
focal genus per ha. Fruit frequency was defined as the average pro-
portion of months in the study that a stem of the focal genus
produced fruit. Productivity was defined as the average proportion
of all plants (focal genus excluded) in fruit during the months in
which the focal genus fruited. Synchrony was defined as the tem-
poral clustering of fruiting by individuals within the focal genus,
calculated as the coefficient of variation of number of individuals
in fruit during each month of the study. Rainfall was defined as
the mean daily rainfall during the months in which the focal
genus fruited (Table 1). For clarity, model predictors are indicated
by italics throughout.

GIBBON FEEDING OBSERVATIONS.—We observed the feeding behav-
ior of H. albibarbis along standardized vertebrate survey transects
and during focal follows (see Marshall 2010, Marshall et al. 2009b
for details). Mean monthly survey effort across the five forest
types sampled was 61.45 km/mo (SD = 2.73 km). In addition to
gathering standard line-transect data (Buckland et al. 2001, 2010),
whenever we encountered a group of H. albibarbis feeding, the
following data on the plant fed upon by the first primate individ-
ual sighted were collected: the identification (to the lowest taxo-
nomic level possible), location (using a GPS unit or detailed
address from the trail), dbh, and growth form (e.g., tree, liana, hemi-
epiphytic fig) of the plant; the part being eaten (e.g., fruit pulp,
seeds, young leaves); the maturity stage, if applicable (e.g., imma-
ture, ripe); the number of animals feeding; and an estimate of the
total crop size (Marshall 2004, Marshall & Leighton 2006). Follow-

ing collection of these data, we continued observations along the
vertebrate survey route, so multiple feeding observations were not
made from the same group on the same day. Therefore, we con-
sidered all feeding observations recorded along transects as inde-
pendent measures of intake. The probability of observing feeding
on a particular genus was proportional to the proportion of time
that gibbons spent feeding on it, therefore these independent mea-
sures gathered along survey routes reflect overall diet composition
(i.e., proportions of feeding time spent eating each genus).

We collected additional feeding data during the course of
targeted focal observations. Target groups were selected at ran-
dom from among the known groups at the site (during the
research period N = 20–28 groups, located across the full range
of forest types). After contacting the target group, we randomly
selected a focal individual and followed until it began feeding.
The same feeding data were gathered as were collected on census
routes and data collection continued for 30 min, at which point a
new focal individual was randomly chosen. Feeding by the new
focal animal was not recorded until it had travelled to a different
tree or liana to ensure that multiple feeding observations were
not recorded from the same individual plant.

We gathered one feeding observation every 3.6 d (duration
between successive feeding observations varied from 0 to 68 d,
SD = 6.3). We found no significant difference in use of plant
genera between data gathered on follows and those gathered on
census routes (N = 154, Mann Whitney U = 11,857, P = 0.99),
and therefore they were lumped in order to increase sample size.

ECOLOGICAL PREDICTORS OF FRUIT CONSUMPTION.—We created 20
models (including an intercept model) predicting use (number of
feeding observations for each genus) of a given plant genus based
on a set of candidate predictor variables, reflecting hypotheses
about which variables influenced gibbon fruit consumption

TABLE 1. Description of predictors used in models of Hylobates albibarbis foraging

behavior.

Predictor Description

Form Plant growth form: tree or liana (Ficus categorized as a

liana)

Crop Size Average # of fruits per crop of genus i in four ordered

categories: I(1–25 fruits), II(26–100 fruits), III(101–500

fruits), IV(>500 fruits)

Dbh Average stem diameter at breast height of genus i

Stem density Stems per hectare of genus i

Fruit Frequency Proportion of months in fruit for an average stem of

genus i

Synchrony Temporal overlap of fruiting stems of genus i (calculated

as the coefficient of variation of the vector of # fruiting

stems per month)

Productivity Average proportion of all stems in forest in fruit during

months in which genus i fruited

Rainfall Average daily rainfall (cm) during months in which genus

i fruited
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(Table S1). We compared these models using an information the-
oretic approach based on Akaike’s Information Criterion (AICc,
corrected for small sample sizes; Burnham & Anderson 2002).
All models were fit using a negative-binomial distribution, which
incorporates an additional parameter (h) to account for over-dis-
persed count data. They were therefore generalized linear regres-
sion models, using a log link function. Because raw values of the
continuous predictor variables were on scales that differed by
orders of magnitude, they were log-transformed in order to facili-
tate compatible scaling, variance stabilization, and use of a GLM
with a log-link. Models were evaluated using AICc model com-
parison and averaging (Johnson & Omland 2004) using the Mu-
MIn package (Barto�n 2012) in R (R Development Core Team
2012) to produce estimates of predictors within an averaged
model. Estimates of predictors were considered reliable if 95%
confidence intervals did not overlap zero.

RESULTS

VARIABILITY IN PLANT ECOLOGICAL AND PHENOLOGICAL

CHARACTERISTICS.—We examined the correlation among variables
prior to model fitting to determine whether any were highly cor-
related, which may have produced inaccurate model results.
There were no strong correlations between continuous predictors
(maximum r = �0.44; Table S2).

There was a large amount of variation in ecological and phe-
nological predictor values (Table 2) across the 154 plant genera
included in this study (Table S3). For instance, spatial and temporal
abundance varied by orders of magnitude, as did average crop sizes.
There was also a large range of stem sizes within both trees
(mean = 30.4 � SD = 15.7 cm) and lianas (mean = 5.5
� SD = 0.5 cm). Stem density ranged from 0.1 to 27.1 stems per ha
(mean = 2.5 � SD = 3.6 stems per ha). Fruit frequency ranged from
0.0005 to 0.33 (mean = 0.05 � SD = 0.06). Productivity ranged
from 0.02 to 0.09 (mean = 0.05 � SD = 0.01), while synchrony
ranged from 46.4 to 806.2 (mean = 273.6 � SD = 189.4). The dis-
tributions of these values were similar between plant genera that
were consumed versus those that were unused by gibbons, with the
exception of the shape of the distributions for synchrony and stem den-
sity (Fig. 1). Gibbons fed on genera with higher stem densities and
lower synchrony values.

There was significant temporal variation in the overall avail-
ability of fruiting stems (Fig. 2A). There were also differences
among genera in synchrony and fruit frequency of individual stems,
resulting in distinct phenological patterns (Figs. 2B, C and D).
Stems of some genera, such as Ochanostachys (Olacaceae) produced
fruit as often as the overall average (Ochanostachys fruit fre-
quency = 0.04, overall genera mean fruit frequency = 0.05), while
confining fruiting to only several months, resulting in a high syn-
chrony value (CV = 295.8; Fig. 2B). In contrast, other genera such
as Girroniera (Ulmaceae, Fig. 2C) and Artabotrys (Annonaceae,
Fig. 2D) produced fruit in almost every month. Unlike Girroniera

TABLE 2. Mean and standard deviation of predictors for all genera (column 2), and

subset of those genera unused (column 3) and used (column 4) by gibbons.

Predictors All genera Unused genera Used genera

Fruit frequency 0.05 � 0.06 0.05 � 0.06 0.06 � 0.06

Stem density 2.48 � 3.57 1.94 � 2.97 4.32 � 4.72

Mean productivity 0.05 � 0.01 0.05 � 0.01 0.05 � 0.01

Synchrony 277.05 � 191.94 303.00 � 195.50 188.83 � 150.86

DBH 24.84 � 16.37 24.48 � 15.55 26.05 � 19.10

Mean rainfall 11.63 � 2.45 11.60 � 2.46 11.72 � 2.45

Mean richness 52.81 � 8.70 53.09 � 9.23 51.85 � 6.59

A B

C D

E F

G H

FIGURE 1. Histograms of model predictors, divided into genera used

(shown in red) and unused (shown in white) by gibbons. Vertical lines depict

means of continuous predictor variables for used (solid red) and unused

(dashed black) genera.
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(fruit frequency = 0.13, CV = 64.4) however, genera such as Arta-
botrys, only remained constantly available due to low synchrony
among stems (CV = 65.7), rather than by stems fruiting often
(fruit frequency = 0.04). All three genera had comparable stem density
(~3–5 stems per ha).

ECOLOGICAL CHARACTERISTICS OF GIBBON FRUIT USE.—The AICc
comparisons gave the top model 89 percent of the model weight
(Table 3), which performed substantially better than the intercept
only null model (ΔAICc = 38; 0% model weight). This top
model consisted of three predictors: synchrony, stem density, and fruit

frequency. The next highest-ranking model included only synchrony
(ΔAICc = 6; 4% of model weight). Effect estimates of synchrony,
stem density, and fruit frequency were produced in an averaged
model, based on AICc weighting of all 20 models, which was
heavily biased toward the top two models (comprising over 90%
of model weight).

Stem density (estimate = 0.32, SE = 0.32; Fig. 3A) and fruit
frequency (estimate = �0.50, SE = 0.38; Fig. 3B) had only weak
reliability as predictors of use of a given genus by H. albibarbis. In
contrast, synchrony had a reliably negative effect on the amount of
predicted use (estimate = �2.14, SE = 0.71; Fig. 3C). There was
one other reliable predictor in the averaged model (Fig. 4): dbh
(estimate = 1.75, SE = 0.80); although our AICc model compari-
son indicated that it was of low relative importance (receiving
only 2% model weight when occurring with the top two predic-
tors, stem density and fruit frequency, and ranked lower than the null
model when occurring as a lone predictor). This likely reflects
the small effect size of dbh.

To establish whether Ficus was solely responsible for the
strong negative effect of synchrony on H. albibarbis food use, we
re-ran the analysis with Ficus excluded. The order of models
favored by AICc comparison did not change (additionally, the
model with synchrony alone increased from 4% weight to 9%
weight) and the averaged model estimate for synchrony was still
well supported (estimate = �1.76, SE = 0.68).

We were also concerned that genera that only fruited once
may have had a high synchrony value as an artifact, erroneously
driving this result. We therefore re-ran our analysis using only
genera that fruited at least three times and found no qualitative
difference in our results from the full analyses presented here.

DISCUSSION

The central objective of this study was to identify the ecological
and phenological predictors of fruit consumption by White-
bearded gibbons inhabiting a highly variable Southeast Asian for-
est. We used a model selection approach to identify key character-
istics of gibbon fruit use. The results of model comparison based
on AICc suggested that only three ecological characteristics were
important predictors of resource use: the overall abundance of a
genus (stem density), the proportion of time that a genus produced
fruit (fruiting frequency), and the extent to which stems within a
genus fruited at the same time (synchrony). Further analysis revealed
that, of the three most important predictors, only synchrony had a
reliable (negative) effect, indicating that gibbons feed more often
on genera whose stems fruit out of phase with each other (i.e., low
synchrony). Dbh was also found to have a reliable effect estimate,
but was a far less useful predictor than synchrony. Although low fru-
iting synchrony is a well-known characteristic of the most frequently
consumed genus (Ficus), we found the same result when Ficus was
excluded from the analysis, which suggests that the importance of
low fruiting synchrony for gibbons is not due solely to figs.

IMPORTANCE OF FRUITING ASYNCHRONY FOR FRUGIVORES.—Ficus
spp. have long been known for their asynchronous phenology, as

A

B

C

D

FIGURE 2. Plot of general forest productivity illustrating the proportion of

the overall number of stems in the forest bearing fruit over time (A), as well

as fruiting profiles of three genera representing prototypical phenological pat-

terns. Stems of some genera, such as Ochanostachys (B) produced fruit as often

as the overall average (Ochanostachys fruit frequency = 0.04, overall genera

mean fruit frequency = 0.05), yet were highly synchronous (CV = 295.8). In

contrast, other genera such as Girroniera (C) and Artabotrys (D) produced fruit

in almost every month, either by fruiting often (Girroniera; fruit fre-

quency = 0.13) or exhibiting low synchrony among stems (Artabotrys;

CV = 65.7).

TABLE 3. Akaike’s information criterion (AICc) model comparison results, showing the

top two models and the null model.

Model components df Log-likelihood AICc ΔAICc Weight

Stem density, fruit

frequency, synchrony

5 �121.98 254.36 0.00 0.89

Synchrony 3 �127.10 260.36 6.00 0.04

Intercept (Null Model) 2 �144.16 292.41 38.04 0.00
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well as their role as a heavily used keystone resource for many
tropical frugivores (Janzen 1979). Because of this, and due to
heavy use of Ficus by gibbons at CPRS (Marshall & Leighton

2006, Marshall et al. 2009a) we examined whether Ficus alone was
responsible for the finding that low fruiting synchrony strongly pre-
dicted gibbon feeding observations. Notably, we found that Ficus
did not drive this result. The general importance of asynchronous
fruiting, beyond solely the genus Ficus, therefore suggests that for
some foragers, Ficus may simply be an important example within
a larger set of asynchronous food resources. In particular, three
of the next four most heavily used genera had comparable syn-
chrony values (Artabotrys (Annonaceae), CV = 66; Syzygium (Myrta-
ceae), CV = 75; Diospyros (Ebenaceae) CV = 81; see Fig. 3C). A
diet biased toward genera exhibiting low fruiting synchrony likely
buffers animals from food scarcity. Furthermore, because a single
genus, such as Ficus, is unlikely to be sufficiently common to
solely support large, diverse assemblages of tropical frugivores,
vertebrate populations likely also rely on other taxa with low syn-
chrony for persistence (Leighton & Leighton 1983, Terborgh
1983, Peres 2000). These results suggest that asynchronously fru-
iting plant genera may be particularly important for habitat resto-
ration of tropical forests and the conservation of frugivore
populations that inhabit them. This is likely to be especially
important in hyper-variable environments exhibiting prolonged
periods of fruit scarcity, such as those found at CPRS.

TAXONOMY, PHENOLOGY AND ASYCHRONY.—Plant genera can offer
frugivores constant fruit availability as a result of individual stems
either fruiting often (i.e., high fruit frequency) or out of phase with
each other (i.e., low synchrony). Our results demonstrate that gib-
bons prefer to feed on plant genera that provide consistent fruit
availability due to fruiting asynchrony rather than those that are
consistently available due to high individual fruiting frequency.
Because our analyses were conducted at the genus level, low syn-
chrony between stems could have arisen either from asynchrony
among all congeners, or asynchrony between synchronously
fruiting species. Future work focused specifically on intra- and

A B C

FIGURE 3. Estimated trends for key ecological variables. Number of feeding observations per genus by Hylobates albibarbis as a function of the per genus stem

density (A), fruit frequency (B) and synchrony (C). Axes are displayed in natural log scaling to match the scale used for model fitting. Gray dots are the raw observa-

tions and solid curves depict estimated means. Dashed and dotted curves depict 95 percent confidence bands for the mean. Heavy line in C indicates that the

model-averaged confidence intervals for this variable do not include zero. Neither stem density nor fruit frequency had reliable effects on fruit use. In contrast,

genera with low synchrony values (high asynchrony) were reliably consumed more often.

FIGURE 4. Model-averaged coefficient estimates (including 95% confidence

intervals) for averaged models. As these estimates were calculated based on

log-transformed data, expected use is proportional to a value of the predictor

raised to the coefficient estimate. Coefficient estimates less than zero result in

a lower expected count while those greater than zero result in a higher

expected count. Coefficient plots such as these depict the direction and rela-

tive reliability of each estimate, not the relative effect size. Predictors are dis-

played in descending order of relative importance assigned by AICc

comparison.
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inter-specific fruiting asynchrony within these genera would be
valuable for examining alternative explanations for fruiting asyn-
chrony among congeneric plants, which has been hypothesized to
reduce competition for dispersers between closely related species
(Snow 1965, Wheelwright 1985, van Schaik et al. 1993). Because
genera that fruit asynchronously are fed on more often, this phe-
nological strategy might increase the likelihood of seed dispersal.
This is probably due at least in part to the fact that they are
available during periods of fruit scarcity (Marshall et al. 2009a).

Although both high fruiting frequency and low synchrony
would tend to promote availability during times of general scarcity,
it is unclear why genera with low fruiting synchrony would be
more important to gibbons than those with high fruiting fre-
quency. Perhaps nutritional or metabolic constraints on plant
reproduction (or life history tradeoffs) preclude individuals from
continuously producing high quality fruit. However, the fruits of
some highly used genera, such as those of Ficus, are considered to
be of relatively low nutritional quality (Leighton 1993), so alterna-
tive reproductive constraints, such as those placed on large crop
sizes, may be operating as well. Regardless, genera whose stems
produce attractive crops (whether due to high nutritional quality
or large quantities of fruit) may represent optimal food sources
for some frugivores if they are consistently available due to parti-
tioning of fruiting events between individuals. Work comparing
the morphological and chemical differences between fruits pro-
duced under asynchronous and continuous phenologies, as well as
crop sizes associated with these reproductive habits, is needed.

CONCLUSION

Feeding behavior of a tropical frugivore is influenced by general
ecological and phenological characteristics of plant resources. While
there was no evidence that gibbons avoided mast fruiting genera,
which are characterized by high values of forest productivity, their
diets were biased toward genera with particularly low inter-individ-
ual fruiting synchrony. By incorporating a range of ecological char-
acteristics and a large number of genera, we determined that
asynchronous fruiting, which is well-recognized from Ficus studies,
may be important across a broader range of plant taxa. Considering
the amount of variation in the ecological characteristics of plants
and the diversity of frugivores, the patterns we report for gibbons
likely do not apply to all frugivores. One possible reason comes
from gibbons’ preference for traveling, and to a lesser extent feed-
ing, in upper canopy trees (Cannon & Leighton 1994, Marshall
et al. 2009b), which as a whole fruit much less frequently than
understory trees (Sakai 2002). This could potentially make asyn-
chronous fruit sources particularly more important for these can-
opy feeders, than for frugivorous taxa that feed predominantly on
frequently fruiting understory trees and shrubs (e.g., many birds) or
those that can migrate in response to spatial and temporal variation
in food availability (e.g., orangutans, hornbills, pigs; Leighton &
Leighton 1983, Curran & Leighton 2000, Marshall et al. 2014).
Additional research on the ecological and phenological characteris-
tics influencing fruit consumption by other frugivores would help
determine how broadly our results apply, as well as deepen our

understanding of frugivore ecology and contribute to conservation
and restoration efforts.
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