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1  |  INTRODUC TION

A fundamental goal in evolutionary biology is to understand the 
various evolutionary processes which lead to observed patterns of 
variation. Acoustic signals, like any phenotypic trait, are subject to a 
combination of neutral (Kimura, 1983) and adaptive (Morton, 1975) 

evolutionary processes. Understanding evolutionary pressures on 
acoustic signals is of particular interest, as inter- and intra-specific 
variation in acoustic signals has important implications for mate 
choice and recognition, as well as speciation (Wilkins et al., 2012). 
The importance of both genetic and environmental influences on the 
development of behaviours is well-recognized, but disentangling the 

Received: 29 May 2020  | Revised: 24 October 2021  | Accepted: 9 November 2021

DOI: 10.1111/jeb.13962  

R E S E A R C H  A R T I C L E

Moderate evidence for heritability in the duet contributions of 
a South American primate

Dena J. Clink1  |   Allison R. Lau2,3  |   Sreetharan Kanthaswamy3,4 |   Lynn M. Johnson5 |   
Karen L. Bales2,3,6,7

© 2021 European Society for Evolutionary Biology.

1K. Lisa Yang Center for Conservation 
Bioacoustics, Cornell Lab of Ornithology, 
Cornell University, Ithaca, New York, USA
2Animal Behavior Graduate Group, 
University of California, Davis, Davis, 
California, USA
3California National Primate Research 
Center, University of California, Davis, 
Davis, California, USA
4School of Mathematical and Natural 
Sciences, Arizona State University (ASU) 
at the West Campus, Glendale, Arizona, 
USA
5Cornell Statistical Consulting Unit, 
Cornell University, Ithaca, New York, USA
6Department of Psychology, University of 
California, Davis, Davis, California, USA
7Department of Neurobiology, Physiology, 
and Behavior, University of California, 
Davis, Davis, California, USA

Correspondence
Dena J. Clink, K. Lisa Yang Center for 
Conservation Bioacoustics, Cornell Lab 
of Ornithology, Cornell University, Ithaca, 
NY, 14850, USA.
Email: dena.clink@cornell.edu

Funding information
Good Nature Institute; NIH Clinical 
Center, Grant/Award Number: HD092055 
and OD011107

Abstract
Acoustic signals are ubiquitous across mammalian taxa. They serve a myriad of func-
tions related to the formation and maintenance of social bonds and can provide con-
specifics information about caller condition, motivation and identity. Disentangling 
the relative importance of evolutionary mechanisms that shape vocal variation is dif-
ficult, and little is known about heritability of mammalian vocalizations. Duetting––
coordinated vocalizations within male and female pairs––arose independently at least 
four times across the Primate Order. Primate duets contain individual- or pair-level 
signatures, but the mechanisms that shape this variation remain unclear. Here, we 
test for evidence of heritability in two call types (pulses and chirps) from the duets of 
captive coppery titi monkeys (Plecturocebus cupreus). We extracted four features––
note rate, duration, minimum and maximum fundamental frequency––from spectro-
grams of pulses and chirps, and estimated heritability of the features. We also tested 
whether features varied with sex or body weight. We found evidence for moderate 
heritability in one of the features examined (chirp note rate), whereas inter-individual 
variance was the most important source of variance for the rest of the features. We 
did not find evidence for sex differences in any of the features, but we did find that 
body weight and fundamental frequency of chirp elements covaried. Kin recognition 
has been invoked as a possible explanation for heritability or kin signatures in mam-
malian vocalizations. Although the function of primate duets remains a topic of de-
bate, the presence of moderate heritability in titi monkey chirp elements indicates 
duets may serve a kin recognition function.
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relative influences of each remains a challenge (Mundinger & Lahti, 
2014) and is likely to be taxa-specific.

Quantifying the genetic basis of variation in vocalizations has 
important implications for understanding the evolutionary pro-
cesses that shape vocal diversity, but relatively little is known 
about the heritability of mammalian calls (Blumstein et al., 2013), 
particularly in respect to the heritability of individually distinct 
call features. In bats (Nycticeius humeralis), there is evidence for 
heritability of individual signatures in pup isolation calls (Scherrer 
& Wilkinson, 1993). In Belding's ground squirrel (Spermophilus 
beldingi), individuals within a particular site were more similar 
to each other than individuals from a different site, and the au-
thors attribute individual acoustic variation to genetic influences 
(McCowan & Hooper, 2002). In yellow-bellied marmots (Marmota 
flaviventris), there was evidence for heritability of call features in 
yearlings and adults, whereas variation in juvenile calls was bet-
ter explained by maternal effects (effects on offspring phenotype 
which are shared by offspring with the same mother; Blumstein 
et al., 2013).

Despite the prevalence of kin signatures across taxa and sig-
nal modalities, relatively little is known about how kin signatures 
develop (Sharp et al., 2005). Kin signatures may be genetically de-
termined or acquired (Sherman et al., 1997), and the mechanisms 
appear to vary across taxa. For example, in bell miners (Manorina 
melanophrys), vocal similarity correlates with genetic relatedness, 
which has important implications for understanding kin recogni-
tion in this system (McDonald & Wright, 2011). Bell miners live 
in large colonies of hundreds of individuals, which are organized 
into breeding pairs that are assisted by helpers. Helpers tend to 
be closely related to the breeding pairs, and helpers also have 
calls that are more similar to the breeding male than non-helpers. 
Importantly, in this system young interact with related and un-
related group members, which makes the possibility for learning 
less likely (although it has not been ruled out empirically; Leedale 
et al., 2020). Whereas in red-backed fairy-wrens (Malurus melano-
cephalus) there is evidence that kin signatures are learned in the 
egg, as female songs are similar to their mothers’ in-nest calls (that 
they heard only as embryos; Dowling et al., 2016). This is also the 
case in long-tailed tits (Aegithalos caudatus), where it was shown 
experimentally that nestlings learn calls from provisioning parents 
during the nestling period (Sharp et al., 2005).

Nonhuman primates (hereafter primates) have a limited capacity 
for vocal learning relative to other taxa (Fedurek & Slocombe, 2011). 
However, in contrast to early views that primate calls are innate and 
genetically fixed (Brockelman & Schilling, 1984; Owren et al., 1993), 
there is growing evidence for phenotypic plasticity in primate vocal-
izations across taxa (Clink et al., 2019; Clink et al., 2019; Crockford 
et al., 2004; Tanaka et al., 2006; Terleph et al., 2018). In duetting 
primates, there is evidence that species-specific acoustic structure 
is genetically fixed (Brockelman & Schilling, 1984). However, in agile 
and lar gibbons (Hylobates agilis and H. lar), there is evidence that 
male juveniles sing female-specific duet contributions (Koda et al., 
2014). Juvenile agile gibbon females were also shown to track their 

mothers, and were more well-synchronized with their mothers as 
they reached more advanced stages of social independence (Koda 
et al., 2013). In addition, convergence in titi monkey (Plecturocebus 
cupreus; Clink et al., 2019) and tarsier (Tarsius spectrumgurskyae; 
Clink et al., 2019) duetting partners indicates that duets exhibit 
some degree of vocal plasticity.

A few studies of primate vocalizations have aimed to quantify 
the influence of genetics on acoustic structure. For example, the 
ability to distinguish between kin and non-kin based on acoustic sig-
nals (and the adaptive advantages it confers) has been invoked as 
an explanation for acoustic similarity among closely related mandrill 
individuals (Mandrillus sphinx; Levréro et al., 2015). In indris (Indri 
indri), male (but not female) song features had a strong relation-
ship with genetic distance, providing evidence that male songs may 
contain information about relatedness (Torti et al., 2017); this was 
also the case with mouse lemur (Microcebus murinus) advertisement 
calls which contained acoustic patrilineal signatures (Kessler et al., 
2012). In captive chimpanzees (Pan troglodytes), within-group vocal 
convergence in pant hoots could not be linked to genetics, as males 
were from diverse origins, and convergence was attributed to vocal 
learning (Marshall et al., 1999). This was also the case in Campbell's 
monkeys (Cercopithecus campbelli), as acoustic similarity was related 
to social bond strength but not genetic relatedness (Lemasson et al., 
2011). Male kin signatures in mouse lemur advertisement calls were 
invoked as a mechanism for inbreeding avoidance (Kessler et al., 
2012), whereas male signatures in indri vocalizations were attributed 
to reduced potential for inbreeding in extra-pair copulations, or as a 
way to mediate aggression among related males (Torti et al., 2017).

Across a diverse range of taxa and vocalization types, there is 
evidence for inter-individual differences in call features (Darden 
et al., 2003; Delgado et al., 2013; Favaro et al., 2016; Ji et al., 2013; 
Kershenbaum et al., 2013; Kirschel et al., 2011; Terry et al., 2005; 
Trimble & Charrier, 2011). Inter-individual differences in call fea-
tures may be adaptative, as identity signalling can confer advan-
tages to the signaller, such as decreased harassment by neighbours 
and increased stability in reciprocal interactions (Tibbetts & Dale, 
2007). Variation in call features may be the result of neutral evolu-
tion wherein a unique combination of ontogenetic, environmental 
and genetic factors lead to observed patterns of variation (Podos & 
Warren, 2007); neutral and adaptive explanations are not mutually 
exclusive. Individual differences may also be the result of pheno-
typic plasticity wherein individuals actively differentiate from their 
neighbours, similar to what is seen in the territorial drumming of 
kangaroo rats (Randall, 1995). For taxa that exhibit vocal learning, 
inter-individual differences can arise through imperfect copying or 
novel variants (Wilkins et al., 2012), and in some cases, learned traits 
could have higher heritability than genetic traits (Danchin et al., 
2004). Substantial inter-individual variation has been found in a va-
riety of primate taxa, including loud calls of orangutans (Pongo pyg-
maeus (Spillmann et al., 2017), duet contributions of male (Hylobates 
funereus (Lau et al., 2018); H.  lar (Terleph et al., 2018)) and female 
gibbons (H. funereus (Clink et al., 2017); H. lar (Terleph et al., 2015)), 
male and female titi monkeys (P. cupreus (Lau et al., 2020)), female 
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tarsiers (T. spectrumgurskyae (Clink et al., 2019)) and indris (I. indri 
(Torti et al., 2018)), but the processes that lead to this variation re-
main poorly understood.

Inter-individual differences can occur in both temporal and spec-
tral parameters of the vocalizations. Fundamental frequency of vo-
calizations is determined by the rate of the opening and closing of 
the vocal folds of the larynx, and fundamental frequency has been 
shown to vary substantially across call types, individuals, sex and 
species (Taylor & Reby, 2010). The vocal folds can develop inde-
pendently of skeletal structures, which means there does not nec-
essarily need to be a correlation between fundamental frequency 
and body size (e.g. in humans (Künzel, 1989)). It has also been argued 
that because fundamental frequency can be actively modulated 
by the calling animal that it may not be a reliable predictor of body 
size (Fitch, 1997). But, when comparing across age and sex classes 
within a species, a relationship between body size and fundamental 
frequency is often observed (e.g. hamadryas baboons Papio hama-
dryas (Pfefferle & Fischer, 2006); baboons Papio cynocephalus ursi-
nus (Fischer et al., 2002)). Inter-individual differences in fundamental 
frequency can also arise via variation in hormone levels, as male 
white-handed gibbons with higher androgen levels were shown to 
have higher fundamental frequency vocalizations than males with 
lower androgen levels (Barelli et al., 2013). The mechanisms that 
lead to inter-individual differences in temporal structure are not well 
understood.

Here, we aim to investigate the influence of genetic relat-
edness on acoustic structure of coppery titi monkey (P. cupreus) 
duets. Previous work has shown that the duet contributions of titi 
monkeys are individually distinct (Lau et al., 2020) and that duets 
exhibit a degree of vocal plasticity, as duetting individuals con-
verge with their partner in rate of note output (Clink et al., 2019). 
The function(s) of duetting in titi monkeys and other nonhuman 
primates remains a topic of debate (Singletary & Tecot, 2020), 
although a recent playback study in black-fronted titi monkeys 
(Callicebus nigrifrons) provided evidence that titi monkey duets 
serve a joint territorial defence function (Caselli et al., 2015). Titi 
monkey duets are species-specific (Adret et al., 2018), providing 
evidence for genetic influence in species-specific duet structure, 
but relatively little is known about individual-level genetic influ-
ences. We analysed the duet contributions recorded in a captive 
colony of titi monkeys with known relatedness to test the hypoth-
esis that titi monkey duet features are heritable. We used Bayesian 
multilevel models to estimate heritability of four features––note 
rate (notes per s), duration (s), minimum and maximum fundamen-
tal frequency (Hz)––estimated from spectrograms of pulse and 
chirp duet contributions. We also tested whether duet features 
vary by sex or weight of the calling individual, as variation in duet 
features may arise due to sex differences or differences in body 
weight. We predicted that: (1) there would be evidence for herita-
bility in all duet features examined; (2) spectral features (e.g. mini-
mum and maximum fundamental frequency) would vary with body 
size; and (3) there would not be substantial differences between 
male and female duet contributions.

2  |  METHODS

2.1  |  Study subjects

Titi monkeys are pair-living South American primates that regu-
larly engage in species-specific duets (Adret et al., 2018). There is 
little evidence for sex specificity in duet contributions, but there is 
a high degree of synchrony as duetting partners alternate consist-
ently between the high- and low-frequency components of the duet 
(Müller & Anzenberger, 2002; Robinson, 1979). The present study 
focused on a captive colony of coppery titi monkeys (P. cupreus; 
hereafter titi monkeys) at the California National Primate Research 
Center (CNPRC), Davis, CA, USA. Subjects at the CNPRC are housed 
in male–female pairs along with their offspring and are in acoustic 
contact (and very little visual contact) with other members of the 
colony. Detailed descriptions of housing conditions can be found in 
Tardif et al. (2006).

2.2  |  Acoustic data collection

Data were collected opportunistically in the morning hours (be-
tween 06:00 and 07:30) from March 2017 to March 2019 using a 
Marantz PMD 660 flash recorder and a Marantz Professional Audio 
Scope SG-5B directional condenser microphone. We recorded at a 
sampling rate of 44.1 kHz, 16-bit resolution, and saved as Waveform 
(.wav) audio files. All recordings were taken less than 3 metres from 
the calling animals. Titi monkey duets have a substantial amount of 
overlap in male and female duet contributions and a lack of sex spec-
ificity, which makes isolating the individual contributions difficult. 
Therefore, to identify the calling individual we video-recorded the 
duetting animals using a Canon Vixia HF R200 camera and paired 
the acoustic recordings with the video. For acoustic analysis, we only 
used high-quality recordings during which one pair was vocalizing, 
and in the case where we had multiple high-quality duet recordings 
from the same pair, we chose the highest quality duet for analysis. 
See Lau et al. (2020) for more details on acoustic data collection.

2.3  |  Acoustic analysis

Our analysis focused on two components of titi monkey duets: 
pulses (Clink et al., 2019) and chirps (Lau et al., 2020); see Figure 1 
for a representative spectrogram of a titi monkey duet. We created 
spectrograms of duets in Raven Pro 1.5 Sound Analysis Software (K. 
Lisa Yang Center for Conservation Bioacoustics, Ithaca, NY, USA) 
using the following settings: a 512-point (11.6  ms) Hann window 
(3  dB bandwidth  =  124  Hz), 75% overlap and a 1024-point DFT, 
yielding time and frequency measurement precision of 2.9 ms and 
43.1 Hz. One observer (ARL) isolated the pulse and chirp elements 
from the duets and saved each element as a.wav file. For each duet 
element (pulse and chirp), we created selection tables in Raven Pro 
1.5. We used robust measurements for feature extraction, which 
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F I G U R E  1  Representative spectrogram 
of a duet sequence from a pair of coppery 
titi monkeys at the CNPRC. Duetting 
individuals alternate duet contributions 
and the first ‘pulse-chirp’ in this 
spectrogram was emitted by the male of 
the pair, and the second ‘pulse-chirp’ was 
emitted by the female. This alternating 
pattern was continued throughout the 
duet, but only a portion of the duet is 
shown for visual clarity. Spectrograms 
were made in the Matlab-based program 
Triton (Wiggins, 2003) using 1000-point 
(22.7 ms) Hann window with 85% overlap

TA B L E  1  Summary of outcome and predictor variables used in the present analysis

Description
Call 
type Sex N Mean ± SD Range

Outcome

Note rate (notes over 
total duration)

Number of notes divided by total 
duration

Chirp F 119 2.35 ± 0.35 1.35–3.72

M 125 2.29 ± 0.31 1.61–3.59

Pulse F 140 3.8 ± 0.51 2.38–5.53

M 162 3.75 ± 0.44 2.51–5.32

Duration (s) Total duration of the duet element 
in seconds

Chirp F 119 2.98 ± 1.36 0.54–8.89

M 125 3.57 ± 1.65 0.83–10.30

Pulse F 140 2.34 ± 0.77 0.54–5.76

M 162 2.76 ± 0.95 0.94–5.32

Low frequency (Hz) Minimum fundamental frequency of 
the duet element

Chirp F 119 3864.09 ± 784.24 2227.30–6418.50

M 125 3372.01 ± 499.77 1999.00–4726.40

Pulse F 140 3042.32 ± 658.83 861.30–4048.20

M 162 3145.96 ± 693.27 689.10–5426.40

High frequency (Hz) Maximum fundamental frequency of 
the duet element

Chirp F 119 5949.46 ± 826.30 3839.6–9869.20

M 125 5521.28 ± 953.66 4285.90–11641.80

Pulse F 140 7831.32 ± 1019.45 6201.60–10938.90

M 162 8299.59 ± 1161.45 5426.40–11627.90

Predictor

Weight (kg) Body weight (kg) of the individual Chirp F 119 1.09 ± 0.12 0.88–1.32

M 125 1.29 ± 0.14 0.89–1.52

Pulse F 140 1.11 ± 0.12 0.88–1.47

M 162 1.28 ± 0.13 0.89–1.52

Sex Categorical variable (male or female) Chirp F 119 – –

M 119 – –

Pulse F 161 – –

M 175 – –

Note: Each model included one duet feature as the outcome, and features were estimated for both pulse (N = 30 males; N = 29 females) and chirp 
(N = 22 males; N = 19 females) elements. Sex of the calling animal and body weight (kg) were used as predictors in all models.
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are less susceptible to inter- and intra-observer variability in note 
selection (Charif et al., 2010). For each pulse and chirp element, we 
estimated the following features: duration of the entire element (s), 
number of notes, minimum 5% and maximum 95% fundamental fre-
quency in the element (Hz) and rate of note repetition (number of 
notes over total duration). The correlation between number of notes 
and duration of the elements was 0.96 for chirps and 0.93 for pulses, 
so we used only duration in our analyses. See Table 1 for a summary 
of features used in the analyses and Figure 2 for a spectrogram high-
lighting how notes were identified from pulses and chirps.

2.4  |  Pedigree analysis

The CNPRC maintains records of each animals’ parentage, sex, birth 
and death, which allowed us to calculate kinship for each dyad in the 
colony. The program PEDSYS (Dyke, 1999) was used to calculate a mul-
tigenerational pedigree for the entire colony; see Kanthaswamy and 
Bales (2018) for details on pedigree construction. We calculated the 
kinship coefficient (k) for each pair of individuals in the colony based on 
the pedigree. The kinship coefficient is the probability that two alleles, 
taken at random from two individuals, are identical by descent (Crow & 
Kimura, 1970); in practice, the kinship coefficient provides a measure 
of genetic similarity of two individuals (Ballou et al., 2010). The me-
dian kinship coefficients for the colony was 0.15 ± 0.12 SD, and values 
ranged from zero (not related) to 1 (self). See Table 2 for a summary of 
the number of pairs of individuals in three kinship categories (k ≤ 0.1, 
0.1 < k <0.25, k ≥ 0.25) by sex and call type.

2.5  |  Statistical analyses

We aimed to test the hypothesis that titi monkey duets contain kin 
signatures. We were also interested to see whether call features 

varied with the sex or weight of the animal. To test our hypotheses, 
we used Bayesian multilevel models implemented in the R package 
‘brms’ (Bürkner, 2018), which serves as an interface to STAN (Stan 
Development Team, 2017). We created separate models for each 
pulse and chirp feature, resulting in eight unique models with the rel-
evant call feature as the outcome and two predictors: body weight 
(kg) and sex (categorical). Each model also included a genetic covari-
ance matrix and a random effect for individual identity. The genetic 
covariance matrix was based on the pedigree analysis described 
above. For all features, we specified a Gaussian distribution, and 
we log-transformed low- and high-frequency features to address 
skew. Following Bürkner (2021), we specified weakly informative 
normal priors for the slope and intercept parameters, and weakly 
informative half-t priors for the variance components. We simulated 
2000 samples from four chains after a warm-up of 2000 samples, for 
a total of 8000 samples for inference. We inspected trace plots to 
ensure proper mixing and converging; trace plots for each model are 
available in Supplementary Material.

Heritability is defined as the proportion of genetic variance rel-
ative to the total variance for the trait(s) of interest (Lynch & Walsh, 
1998). We used intraclass correlation coefficients (ICCs) to estimate 
the amount of variance in each call feature that could be attributed 
to three levels in our dataset: genetic, inter-individual and intra-
individual. ICCs measure the relative contribution of each level to 
the total variance and ICC values range between 0 and 1, with an 
ICC value close to 1 indicating that level is an important source of 
variation (Merlo et al., 2005). We considered the ICC values for the 
genetic-level variance to represent heritability of the call feature. 
The values we report can be considered corrected heritability as the 
models include body weight and sex as predictors. There is a debate 
in the literature about whether to include fixed effects in models of 
heritability (De Villemereuil et al., 2018; Wilson, 2008), so for com-
pleteness we also include a summary of all models without the fixed 
effects for each of the features as Supplementary Material. These 

F I G U R E  2  Representative spectrogram 
of a single ‘pulse-chirp’ duet contribution. 
The black boxes indicate how individual 
notes were identified. Spectrograms 
were made in the Matlab-based program 
Triton (Wiggins, 2003) using 1000-point 
(22.7 ms) Hann window with 85% overlap
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estimates were calculated the same way as described above, expect 
in this case the models did not contain body weight or sex as predic-
tors. Following the Bayesian analysis reporting guidelines (Kruschke, 
2021), we describe the posterior distributions of parameters using 
quantiles and report the median along with 95% equal-tailed credi-
ble interval calculated using the ‘posterior_summary’ function in the 
‘brms’ package (Bürkner, 2018). We used the ‘bayes_R2’ function in 
the ‘brms’ package to calculate an R2 value for Bayesian regression 
models; R2 values provide information regarding model fit (Gelman 
et al., 2019). All analyses were conducted in the R programming en-
vironment version 3.6.2 (R Core Team, 2019). Figures were made 
using either the ‘ggpubr’ or ‘ggplot2’ packages (Kassambara, 2020; 
Wickham, 2016).

3  |  RESULTS

We report the results of the analysis of 302 pulses (N = 30 males; 
N = 29 females) and 244 chirps (N = 22 males; N = 19 females; 
Table 1). Violin plots showing the distributions of the pulse and 
chirp features are presented in Figure 3. We used ICCs to estimate 
the relative contribution of three levels in our dataset (genetic, 
inter-individual and intra-individual) to the total variance for each 
call feature. We found that genetic variance was an important 
source of variance for only one of the call features: chirp note 
rate [ICC median  =  0.40; 95% posterior credible interval (0.09, 
0.58)]. For the majority of call features, inter-individual variance 
was the most important source of variance (Figure 4; Table 3). We 

TA B L E  2  Summary of the number of pairs of individuals (dyads) in three kinship (k) categories (k ≤ 0.1, 0.1 < k < 0.25, k ≥ 0.25) by sex and 
call type

Call type k ≤ 0.1 0.1 < k < 0.25 k ≥ 0.25 N dyads N Individuals N calls
Mean calls per 
individual

Range per 
individual

Chirp (F) 46 88 37 171 19 119 6.3 3–16

Chirp (M) 59 139 33 231 22 125 5.7 2–14

Pulse (F) 119 216 71 406 29 140 4.8 1–15

Pulse (M) 100 276 59 435 30 162 5.4 2–15

Note: Our dataset consisted of 244 chirps (N = 22 males; N = 19 females) and 302 pulses (N = 30 males; N = 29 females). The k ≥ 0.25 category does 
not include pairs of animals wherein k = 1 (self). See main text for description of how we calculated the kinship coefficient.

F I G U R E  3  Violin plots showing the distribution of pulse and chirp features used in the present analysis. Violin plots show the kernel 
probability density at different values, and the box plots indicate the median value as a horizontal line, and the interquartile range as the 
borders of the box plot. The x-axis indicates whether the call came from a male or female, and the y-axis indicates the value of that particular 
feature (see Table 1 for a full description of the features) 
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did not find any sex differences in call features, but we did find 
body weight was a reliable negative predictor of low frequency 
and high frequency of the chirp elements. We also found a positive 
relationship between body weight and duration of the pulse ele-
ment (Table 3; Figure 5). R2 values for each model are also shown 
in Table 3.

4  |  DISCUSSION

We found moderate evidence for heritability in a single feature of 
titi monkey duets. Out of eight features examined, only note rate 
of chirp elements had moderate heritability (ICC = 0.40), whereas 
the rest of the features had low heritability. The presence of herit-
ability in animal vocalizations has been attributed to possible selec-
tion for the ability to discriminate between kin and non-kin (Scherrer 
& Wilkinson, 1993). Therefore, given moderate heritability in one 
of the chirp features examined, it is possible that titi monkey chirp 
elements provide kin recognition cues. The fact that we found low 
to moderate evidence for heritability in titi monkeys but male indri 
vocalizations varied consistently with genetic relatedness (Torti 
et al., 2017) is particularly interesting given the shared natural his-
tory traits (pair living, territoriality and duetting; Adret et al., 2018; 
Torti et al., 2013) between indris and titi monkeys. For most features 
in our analysis, inter-individual variance was the most important 

source of variance; this was particularly pronounced for the chirp 
features. In addition, we found a negative relationship between 
body size and minimum and maximum fundamental frequency of the 
chirp elements, and that there was a positive relationship between 
body weight and duration of the pulse elements. Our finding that titi 
monkey duet features vary by individual is consistent with previous 
work on this species (Lau et al., 2020).

As with most bioacoustics studies, we had to make choices 
about which feature(s) we estimated from spectrograms of the 
duet elements and used for our subsequent analysis. We chose a 
small subset of relatively uncorrelated spectral and temporal fea-
tures based on previous work done in other species (Blumstein 
et al., 2013; Levréro et al., 2015; Torti et al., 2017). And although 
we did not find strong evidence for heritability in the majority of 
these features, it is possible that other aspects of the duets pro-
vide evidence of genetic relatedness to listening animals. Future 
work that incorporates playbacks of closely and distantly related 
titi monkey individuals will be informative. Another potential lim-
itation of our study is that our data come from a captive colony 
wherein animals are housed at an artificially high density relative 
to what would occur in the wild. Little is known about the degree 
of vocal learning in titi monkeys, but it is possible that captive titi 
monkeys are able to hear so many vocal ‘models’ that their duets 
sound less like their parents’ than they would in the wild. Both 
male (Koda et al., 2014) and female (Koda et al., 2013) gibbon 

F I G U R E  4  Posterior densities of 
the intraclass correlation coefficients 
(ICCs) for three levels in our dataset 
(Genetic, inter-individual and intra-
individual) for four features estimated 
from spectrograms of titi monkey pulse 
and chirp duet elements. We found 
that genetic relatedness was the most 
important source of variance for only one 
feature (note rate for chirp elements). 
For the rest of the call features, inter-
individual variance was the most 
important source of variance. For each of 
the figures, the y-axis refers to ‘density’ 
and only the relative densities between 
classes matter 
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TA B L E  3  Median, lower and upper 95% equal-tailed credible interval of the posterior distributions for parameter estimates from full 
models of the four features estimated from spectrograms of pulse and chirp titi monkey duet contributions

Call type Model Parameter Median Q2.5 (Lower bound)
Q97.5 (Upper 
bound)

Pulse Note rate Intercept 4.09 2.83 5.34

Weight (kg)* −0.30 −1.35 0.73

Sex (M)* 0.01 −0.30 0.30

Genetic random effect 0.28 0.02 0.60

Individual random effect 0.45 0.23 0.60

Residual variance 0.22 0.20 0.24

Genetic (ICC; corrected) 0.29 0.03 0.56

Inter-individual (ICC) 0.47 0.23 0.69

Intra-individual (ICC) 0.24 0.19 0.30

R-squared 0.78 0.75 0.80

Pulse Duration (s) Intercept 0.39 −1.46 2.18

Weight (kg)* 1.74 0.23 3.30

Sex (M)* 0.20 −0.22 0.62

Genetic random effect 0.46 0.05 0.92

Individual random effect 0.55 0.13 0.80

Residual variance 0.54 0.50 0.60

Genetic (ICC; corrected) 0.30 0.04 0.56

Inter-individual (ICC) 0.36 0.08 0.55

Intra-individual (ICC) 0.35 0.29 0.44

R-squared 0.63 0.57 0.67

Pulse High frequency (Hz) Intercept 8.79 8.52 9.05

Weight (kg)* 0.16 −0.06 0.38

Sex (M)* 0.00 −0.06 0.07

Genetic random effect 0.06 0.00 0.12

Individual random effect 0.09 0.03 0.12

Residual variance 0.09 0.08 0.10

Genetic (ICC; corrected) 0.25 0.02 0.48

Inter-individual (ICC) 0.37 0.14 0.54

Intra-individual (ICC) 0.38 0.32 0.48

R-squared 0.57 0.50 0.62

Pulse Low frequency (Hz) Intercept 8.03 7.41 8.62

Weight (kg)* −0.05 −0.56 0.46

Sex (M)* 0.05 −0.10 0.20

Genetic random effect 0.11 0.01 0.29

Individual random effect 0.22 0.10 0.29

Residual variance 0.17 0.16 0.19

Genetic (ICC; corrected) 0.21 0.01 0.51

Inter-individual (ICC) 0.45 0.19 0.60

Intra-individual (ICC) 0.34 0.27 0.43

R-squared 0.67 0.62 0.71
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juveniles track their mother's duet, and older females have duets 
that are more synchronized with their mothers. In our colony, ju-
veniles appear to track their same-sex parent (Lau, unpublished 

data), but the moderate evidence for kin signatures in duet fea-
tures indicates that inter-individual variation in duet features is 
probably not influenced by the parent.

Call type Model Parameter Median Q2.5 (Lower bound)
Q97.5 (Upper 
bound)

Chirp Note rate Intercept 2.62 1.87 3.36

Weight (kg)* −0.20 −0.85 0.45

Sex (M)* −0.09 −0.30 0.11

Genetic random effect 0.24 0.04 0.38

Individual random effect 0.14 0.01 0.29

Residual variance 0.23 0.21 0.26

Genetic (ICC; corrected) 0.40 0.07 0.58

Inter-individual (ICC) 0.23 0.02 0.50

Intra-individual (ICC) 0.38 0.31 0.47

R-squared 0.52 0.44 0.58

Chirp Duration (s) Intercept 0.58 −3.40 4.59

Weight (kg)* 2.24 −1.27 5.67

Sex (M)* 0.16 −1.00 1.29

Genetic random effect 0.87 0.05 1.87

Individual random effect 1.19 0.31 1.73

Residual variance 0.85 0.77 0.94

Genetic (ICC; corrected) 0.30 0.02 0.61

Inter-individual (ICC) 0.41 0.10 0.63

Intra-individual (ICC) 0.30 0.24 0.38

R-squared 0.70 0.65 0.74

Chirp High frequency (Hz) Intercept 8.95 8.60 9.31

Weight (kg)* −0.25 −0.58 0.06

Sex (M)* −0.01 −0.11 0.09

Genetic random effect 0.04 0.00 0.13

Individual random effect 0.11 0.07 0.15

Residual variance 0.08 0.08 0.09

Genetic (ICC; corrected) 0.18 0.01 0.44

Inter-individual (ICC) 0.48 0.27 0.61

Intra-individual (ICC) 0.34 0.26 0.44

R-squared 0.66 0.60 0.70

Chirp Low frequency (Hz) Intercept 8.85 8.46 9.26

Weight (kg)* −0.55 −0.91 −0.19

Sex (M)* −0.05 −0.16 0.06

Genetic random effect 0.07 0.00 0.17

Individual random effect 0.12 0.06 0.17

Residual variance 0.11 0.10 0.12

Genetic (ICC; corrected) 0.22 0.02 0.49

Inter-individual (ICC) 0.42 0.18 0.58

Intra-individual (ICC) 0.36 0.28 0.46

R-squared 0.69 0.64 0.73

Note: We report the variance of both genetic- and individual-level random effects, along with the residual variance, for each model. We also report 
the calculated intraclass correlation coefficients (ICC) for the three levels in our dataset. The fixed effects or predictors included in our models are 
denoted using an asterisk (*). For each model, we also report the R2 values (see main text for details).

TA B L E  3  (Continued)
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Our finding of moderate heritability in chirp note rate is par-
ticularly interesting in the light of the fact that lemur (Macedonia 
& Taylor, 1985) and gibbon (Geissmann, 1984) hybrids differ from 
parental species in terms of the rhythmic structure of their vocal-
izations. A correlation between temporal patterns and genetic relat-
edness was also found in indris (Torti et al., 2017). It is unclear why 
we found a genetic signature in chirp note rate but not in pulses, 
but these findings indicate that the two call types may serve dif-
ferent functions. In addition, the fact that we found a strong rela-
tionship between minimum and maximum fundamental frequency 
of chirp elements and body size indicates that chirp elements may 
provide the listener with information about the size of the calling 
animal (Taylor & Reby, 2010). Previous work on pulse elements in 
this species showed that pulse rate declined with age (Clink et al., 
2019). Combined, these results indicate that titi monkey duets con-
tain information about body size and genetic relatedness (this study), 
age (Clink et al., 2019) and individual identity (Lau et al., 2020) of the 
calling animals. Whether listening animals are able to interpret and 
use this information in meaningful way remains to be seen.

The ability to distinguish between kin and non-kin is import-
ant for many social animals, particularly if correct identification of 
kin leads to reduced aggression or inbreeding avoidance in closely 
related animals. Playback experiments have been particularly use-
ful for testing the ability for animals to recognize kin versus non-
kin based on acoustic cues. For example, cooperatively breeding 
long-tailed tits (Aegithalos caudatus) responded differently to play-
backs of calls of kin and non-kin, providing evidence that they can 

differentiate based on acoustic cues alone (Sharp et al., 2005). In a 
similar experiment, adult female rhesus macaques (Macaca mulatta) 
were able to discriminate between kin and non-kin (Rendall et al., 
1996). This was also the case for female baboons (Papio hamadryas 
ursinus) which showed an ability to attribute both kinship and dom-
inance information to the calls of individuals (Bergman et al., 2003). 
In female mouse lemurs, individuals looked towards the speaker 
faster, approached the speaker sooner, and spent more time near the 
speaker when it broadcast advertisement of unrelated males com-
pared to related males (Kessler et al., 2012). To our knowledge there 
have not been experimental tests of the ability of duetting primates 
to distinguish between duets of kin and non-kin, and future playback 
studies will be informative to help elucidate whether or not primate 
duets can serve a kin recognition function.

The high levels of inter-individual variation shown in this study 
and previous work demonstrating pair convergence in acoustic 
features (Clink et al., 2019) add to the growing body of literature, 
indicating that rather than being inflexible and innate, primate vo-
calizations exhibit a high degree of plasticity (Hedwig et al., 2015; 
Lemasson et al., 2005; Snowdon, 2009). Although the function of 
primate duets remains a topic of debate, it is clear that these long-
distance vocalizations transmit information about the calling individ-
ual or pair to neighbouring conspecifics. The occurrence of strong kin 
signatures in indri duets but relatively weak signatures in titi monkey 
duets raises more questions about the potential differences in func-
tion of long-distance calls between the two primate groups. In addi-
tion, it is unclear whether the different duet components (pulse and 

F I G U R E  5  Coefficient plots from 
models of four features estimated from 
spectrograms of titi monkey pulse (a) 
and chirp (b) duet elements. Each model 
contained sex and body weight of the 
calling individual as predictors. We found 
that body weight was a reliably positive 
predictor of pulse duration, whereas there 
was a negative relationship between 
body weight and minimum and maximum 
frequency of chirp elements. In the plots 
above, each point indicates the median 
posterior density credible interval value, 
the inner black bars represent the 50% 
credible interval, and the outer black bars 
represent the 95% credible intervals. 
The coloured distribution plots indicate 
the associated uncertainty in the point 
estimates 
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chirp) of titi monkey duets serve different functions, or if titi mon-
key listeners can discern between the different duet components or 
different calling individuals. Further tests using playbacks will help 
further our understanding of what types of information titi monkeys 
glean from their duetting neighbours, and whether titi monkey duets 
are used for kin recognition. And importantly, further tests in other 
duetting primate species that investigate both the potential for kin 
signatures and kin recognition will provide important insight into the 
function and evolution of duetting across the Order Primates.
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